合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 勝利油田常規和親油性石油磺酸鹽組成、色譜、質譜、界面張力測定(一)
> 表面活性劑是否對斥水性土壤的潤濕性有影響?——材料和方法
> 生物柴油密度與表面張力的實驗研究以及理論推算
> 反離子鹽KBr濃度對酰胺基陽離子Gemini表面活性劑的表/界面活性的影響(三)
> 酯化度與分子質量對果膠乳化性能、聚集體結構、界面性質的影響規律(一)
> 座滴法測量玻璃熔體表面張力裝置、步驟
> 硅基納米原位乳化減阻劑與原油的界面張力達到10-1mN/m數量級,提高原油采收率
> 農藥霧滴霧化與在玉米植株上的沉積特性研究
> 利用具有較強的表面張力的羧酸改良氧化鉛鋅礦球團干粉成型粘合劑
> ?平衡/動態表面張力測定:煤基C10~13MADS VS2A1
推薦新聞Info
-
> 單萜萜類驅油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(三)
> 單萜萜類驅油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(二)
> 單萜萜類驅油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(一)
> 紫檀芪的穩定性增強型抗氧化劑制作備方及界面張力測試——結果與討論、結論
> 紫檀芪的穩定性增強型抗氧化劑制作備方及界面張力測試—— 引言、材料與方法
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結構形成機制(下)
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結構形成機制(中)
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結構形成機制(上)
> 電鍍液表面張力、接觸角、流速以及壓強等因素對硅通孔浸潤過程的影響(二)
> 電鍍液表面張力、接觸角、流速以及壓強等因素對硅通孔浸潤過程的影響(一)
基于界面張力儀和電位儀分析SPF減水劑結構-性能關系(一)
來源:武漢理工大學學報 瀏覽 93 次 發布時間:2025-11-25
摘要:通過運用現代測試分析方法(IR、GPC)研究SPF高效減水劑官能團特征和分子量分布,使用界面張力儀和電位儀表征和解釋減水劑分子對水泥凈漿分散性能和分散性保持能力。在此基礎上對SPF高效減水劑在混凝土上的應用性能進行了評價。
高性能混凝土被稱為21世紀的混凝土,其生產與施工更趨機械化和自動化,用途更加廣泛。混凝土技術上的差距最重要是在高效減水劑發展水平上。單環芳烴型高效減水劑是指聚合物憎水主鏈由苯基和亞甲基交替連接而成,主鏈的單環有—SO?H、—NH?和—COOH等親水性的官能團,為了對具有這類結構特征的水溶性聚合物進行較系統的研究,把具有這種結構特征的減水劑與萘系為代表的多環芳烴類相區別,定名為單環芳烴型高效減水劑。
單環芳烴型高效能減水劑減水率高達20%,生產工藝又相對簡單,我國研究只是剛起步。一般單環芳烴型高效減水劑分為氨基磺酸系、羥基磺酸類、羥基氨基羧基磺酸類3類高性能減水劑,羥基磺酸類(SPF)是單環芳烴型高效減水劑中的一個重要的組成。SPF作為一種高效減水劑其分子結構特性及應用性能評價在國內外還研究得很少,使用IR、GPC、界面張力儀和ξ電位儀現代分析儀器對SPF高效減水劑官能團特征和分子量分布進行分析,在此基礎上進一步研究了SPF高效減水劑在混凝土上的應用性能。
1試驗
1.1水泥
試驗用水泥為小野田52.5純硅酸鹽水泥,水泥化學成分如表1所示。
表1 水泥的化學成分| 化學組成與礦物組成 | ||||||||||
| SiO? | Al?O? | CaO | Fe?O? | MgO | SO? | K?O | Na?O | TiO? | C?S | C?A |
| 19.35 | 5.39 | 67.57 | 2.24 | 0.1 | 3.8 | 0.5 | 0.3 | 0.15 | 35.6 | 11.1 |
1.2 SPF的制備工藝
將定量苯酚與自制的磺化劑溶于一定量水,加入氫氧化鈉調至堿性,常溫下滴加甲醛,滴加過程中控制滴加速度,體系溫度不超過70℃。滴加結束后在90—100℃左右反應5—7h,反應后期加入分子量調節劑,除去低分子物,得到固含量約為30%的深紅色SPF高效減水劑。
1.3 SPF減水劑分子結構特性的表征
1)SPF紅外光譜分析(IR)用Nicolet公司的NEXUS 670 FT-IRESP紅外光譜儀測定SPF高效減水劑紅外吸收光譜。
2)SPF凝膠滲透色譜儀(GPC)采用美國Waters公司515型凝膠滲透色譜儀測定SPF高效減水劑分子量及其分布特性。
3)表面張力測定采用芬蘭Kibron dIFT雙通道動態界面張力儀測定配成不同質量分數SPF減水劑溶液的表面張力。
4)ξ-電位的測定配制不同質量濃度的SPF高效減水劑溶液,水灰比為800,攪拌后立即將懸浮液注入電泳DYY-III-4型穩壓穩流電泳儀、電泳管槽中,選取20個水泥顆粒為一組,取平均值求出電泳速度,水泥顆粒表面的ξ-電位其數值由亥姆霍茲公式計算。
1.4混凝土應用性能的測定
1)混凝土減水率測定混凝土減水率測定按GB8076—1997進行。
2)混凝土抗壓強度與抗壓強度之比測定混凝土抗壓強度和抗壓強度之比按GB8076—1997進行。
3)凝結時間的測定凝結時間按GB8076—1997進行,采用貫入阻力儀測定,從水泥與水接觸時開始計算。
2結果分析
2.1 SPF減水劑分子結構特性的表征
1)SPF紅外光譜分析(IR)SPF紅外光譜結果見圖1,3430.8cm?1為羥基伸縮振動峰,這不可能是醇羥基,而是酚羥基。3000cm附近有一個小峰,在1474.7cm是亞甲基變形振動峰,說明SPF中含有亞甲基。1636.5cm是苯環上的C=C鍵伸縮振動產生的特征吸收峰,在指紋區中的792.5cm?1區域中的譜帶是取代苯的1,2,6取代的特征吸收峰。1186.5cm?1和1044.1cm?1是由于S=O鍵伸縮振動產生的特征吸收峰,在700—500cm?1的連續吸收峰是S—O、S—S、C—S鍵伸縮振動產生吸收峰。SPF產物的分子中含有磺酸基、羥基和亞甲基等官能團。
2)SPF的分子量及其分布特性分析(GPC)凝膠滲透色譜(GPC)法是分析表征高聚物分子量及分子量分布的重要手段。通過凝膠滲透色譜測定了最佳條件下合成的SPF高效減水劑的分子量及分子量分布,如圖2、表2所示。
| 名稱 | 數均分子量Mn | 峰位分子量M | 重均分子量Mw | Z均分子量Mz | Z+1分子量Mz+1 | 分散度 |
| SPF | 16 828 | 15 827 | 18 654 | 20 770 | 23 032 | 1.108519 |
由表2可知,SPF高效減水劑的重均分子量(Mw)在18000—22000之間,數均分子量(Mn)在16000—18000之間,多分散性系數為1.11,分子量分布較窄,大分子聚合物較少,小分子聚合物較集中,最佳工藝條件下合成的SPF分子結構較為理想。





