婷婷一区二区三区,91精品在线影院,国产美女在线播放,caopeng在线

芬蘭Kibron專注表面張力儀測(cè)量技術(shù),快速精準(zhǔn)測(cè)量動(dòng)靜態(tài)表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟(jì)大學(xué)

同濟(jì)大學(xué)

聯(lián)合大學(xué).jpg

聯(lián)合大學(xué)

寶潔公司

美國保潔

強(qiáng)生=

美國強(qiáng)生

瑞士羅氏

瑞士羅氏

當(dāng)前位置首頁 > 新聞中心

蛋白質(zhì)外聚物中多糖的比例——結(jié)論、致謝!

來源:上海謂載 瀏覽 2648 次 發(fā)布時(shí)間:2021-10-12


四、結(jié)論


油和/或 Corexit 的存在會(huì)導(dǎo)致 EPS 的蛋白質(zhì):多糖比率更高,并在中胚層實(shí)驗(yàn)中降低 SFT。 在這些實(shí)驗(yàn)中,SFT 與 蛋白質(zhì):具有負(fù)斜率的 EPS 多糖。 當(dāng)開闊的海洋 水域和兩種不同的沿海水處理進(jìn)行了比較, 蛋白質(zhì)趨勢(shì):多糖為 CEWAF > DCEWAF > WAF ≥ Control 并且對(duì)于 SFT,它是相反的, CEWAF < DCEWAF < WAF ≤ 對(duì)照。 因此,SFT 與膠體 EPS 中的蛋白質(zhì):多糖比率成反比。


當(dāng)中宇宙水柱的不同尺寸分?jǐn)?shù)為 相比之下,我們發(fā)現(xiàn) EPS 膠體可以降低 SFT 蛋白質(zhì):多糖比例,表明有效的生物乳化 蛋白質(zhì)的容量。 粒子濾波中 SFT 的比較 分?jǐn)?shù) (< 0.45 μm) 和 EPS 膠體分?jǐn)?shù) (< 0.45 μm 和 > 3 kDa),對(duì)于真正溶解的部分 (< 3 kDa),它是 表明只有前兩個(gè)包含 EPS 的部分具有容量 以降低 SFT,而 < 3 kDa 級(jí)分顯示與以下相同的 SFT 純海水或只有真正溶解有機(jī)碳的海水。


顯微鏡技術(shù)(即 CLSM 和 SEM)證實(shí),正如預(yù)測(cè)的那樣,蛋白質(zhì)主要在空氣 - 水界面富集, 強(qiáng)烈影響空氣/水界面處的 SFT 治療。 這些技術(shù)還可視化了不同的聚集體尺寸 和它們的分散,以及聚集體形成的重要性 通過陰離子EPS組分部分之間的Ca2+"橋接"。 SFT 可能會(huì)發(fā)生微小的變化,與蛋白質(zhì):多糖比率的變化相吻合,這可能是 pH 值變化的原因(十分之一) 單位),如 EPS 模型化合物所示,這可能在 CMC 周圍最為突出。 此外,我們表明蛋白質(zhì)和酸性多糖的 EPS 模型成分比 Corexit 導(dǎo)致海水中膠束的自組裝甚至 當(dāng)這些成分的濃度很低時(shí)。 這個(gè) 表明 EPS 在形成方面與 Corexit 相同或更有效 乳液。 然而,關(guān)于相互作用的更系統(tǒng)的研究 不同組件的不同組合,以及更多型號(hào) 單獨(dú)的化合物,可能需要更多地闡明在我們的中宇宙實(shí)驗(yàn)中觀察到的復(fù)雜性。


致謝


這項(xiàng)研究得到了墨西哥灣的資助 支持名為 ADDOMEx 的聯(lián)盟研究的研究計(jì)劃 (微生物對(duì)分散劑和油的聚集和降解 Exopolymers) 聯(lián)盟。 原始數(shù)據(jù)可以在海灣找到 墨西哥研究倡議信息和數(shù)據(jù)合作組織 (GRIIDC) 在網(wǎng)址 https://doi.org/10.7266/N7PK0D64; https://doi.org/10。 7266/N78P5XZD; https://doi.org/10.7266/N74X568X; https://doi. org/10.7266/N79W0D1K。


參考


Angarska, J.K., Dimitrova, B.S., Danov, K.D., Kralchevsky, P.A., Ananthapadmanabhan, K.P., Lips, A., 2004. Detection of the hydrophobic surface force in foam films by measurements of the critical thickness of the film rupture. Langmuir 20, 1799–1806. https://doi.org/10.1021/la035751.


Bopp, R., Santschi, P.H., Li, Y.-H., Deck, B.L., 1981. Biodegradation and gas exchange of gaseous alkanes in model estuarine ecosystems. Org. Geochem. 3, 9–14. https://doi. org/10.1016/0146-6380(81)90007-3.


Bretherton, L., Williams, A.K., Genzer, J., Hillhouse, J., Kamalanathan, M., Finkel, Z.V., Quigg, A., 2018. Physiological response of 10 phytoplankton species exposed to Macondo oil and Corexit. J. Phycol. 54 (3), 317–328. https://doi.org/10.1111/jpy. 12625.


Burd, A.B., Jackson, G.A., 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90. https://doi.org/10.1146/annurev.marine.010908.163904.


Cai, Z., Gong, Y., Liu, W., Fu, J., O'Reilly, S.E., Hao, X., Zhao, D., 2016 Aug 15. 2016. A surface tension based method for measuring oil dispersant concentration in seawater. Mar. Pollut. Bull. 109 (1), 49–54. https://doi.org/10.1016/j.marpolbul.2016.06.028.


Chester, R., 1990. Marine Geochemistry. Unwin Hyman, Ltd, London. Chin, W.-C., Orellana, M.V., Verdugo, P., 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572. https://doi.org/10. 1038/35345.


Chiu, M.-H., Garcia, S.G., Hwang, B., Claiche, D., Sanchez, G., Aldayafleh, R., Tsai, S.-M., Santschi, P.H., Quigg, A., Chin, W.-C., 2017. Corexit, oil and marine microgels. Mar. Pollut. Bull. 122, 376–378. https://doi.org/10.1016/j.marpolbul.2017.06.077.


da Cruz, G.F., Angolini, C.F.F., dos Santos Neto, E.V., Loh, W., Marsaioli, A.J., 2010. Exopolymeric substances (EPS) produced by petroleum microbial consortia. J. Braz. Chem. Soc. 21 (8), 1517–1523. https://doi.org/10.1590/S0103- 50532010000800016.


Decho, A.W., 2000. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20, 1257–1273. https://doi.org/10.1010/S0278-4343(00)00022-4.


Doyle, S.M., Whitaker, E.A., De Pascuale, V., Wade, T.L., Knap, A.H., Santschi, P.H., Quigg, A., Sylvan, J.B., 2018. Rapid formation of microbe-oil aggregates and changes in community composition in coastal surface water following exposure to oil and corexit. Front. Microbiol. 1–16. https://doi.org/10.3389/fmicb.2018.00689. Emerson, S., Hedges, J., 2008. Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press, Cambridge, UK. Ghosh, A.K., Bandyopadhyay, P., 2012. Polysaccharide-protein interactions and their relevance in food colloidsa. In: Intech Open Science, https://doi.org/10.5772/50561. Guo, L., Coleman Jr., C.H., Santschi, P.H., 1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Mar. Chem. 45, 105–119. https://doi. org/10.1016/0304-4203(94)90095-7.


Gutierrez, T., Shimmield, T., Haidon, C., Black, K., Green, D.H., 2008. Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. Strain TG12. Appl. Environ. Microbiol. 4867–4876. https:// doi.org/10.1128/AEM.00316-08.


Han, X., Wang, Z., Chen, M., Zhang, X., Tang, C.Y., Wu, Z., 2017. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances. Environ. Sci. Technol. 51, 3233–3241. https://doi.org/10.1021/acs.est.6b05475.


Hatcher, P.G., Obeid, W., Wozniak, A.S., Xu, C., Zhang, S., Santschi, P.H., Quigg, A., 2018. Identifying oil/marine snow associations in mesocosm simulations of the deep water horizon oil spill event using solid-state 13C NMR spectroscopy. Mar. Pollut. Bull. 126, 159–165. https://doi.org/10.1016/j.marpolbul.2017.11.004.


Hung, C.-C., Santschi, P.H., 2001. Spectrophotometric determination of total uronic acids in seawater using cation exchange separation and pre-concentration lyophilization. Anal. Chim. Acta 427, 111–117. https://doi.org/10.1016/S0003-2670(00)01196-X.


Hung, C.-C., Guo, L., Schultz, G., Pinckney, J.L., Santschi, P.H., 2003. Production and fluxes of carbohydrate species in the Gulf of Mexico. Glob. Biogeochem. Cycles 17 (2), 1055. https://doi.org/10.1029/2002GB001988. Kamalanathan, M., Schwehr, K.A., Bretherton, L.J., Genzer, J., Hillhouse, J., Xu, C., Williams, A., Santschi, P.H., Quigg, A., 2018. Diagnostic tool to ascertain marine phytoplankton exposure to chemically enhanced water accommodated fraction of oil using Fourier Transform infrared spectroscopy. Mar. Pollut. Bull. 130, 170–178. https://doi.org/10.1016/j.marpolbul.2018.03.027.


McClements, D.J., 2011. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297–2316. https://doi.org/10.1039/C0SM00549E. Millero, F.J., 1996. Chemical Oceanography. CRC Press, Boca Raton, FL, pp. 469. Morris, D.L., 1948. Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science 107, 254–255.


Padday, J.F., Pitt, A.R., Pashley, R.M., 1975. Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J. Chem. Soc., Faraday Trans. 1 71, 1919–1931. https://doi.org/10.1039/F19757101919.


Passow, U., Hetland, R.D., 2016. What happened to all of the oil? Oceanography 29, 88–95. https://doi.org/10.5670/oceanog.2016.73.


Pletikapic, G., Lannon, H., Murvai, U., Kellermayer, M.S.Z., Svetlicic, V., Brujic, J., 2014. Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels. Biophys. J. 107, 355–364. https://doi.org/10.1016/j.bpj.2014.04.065.


Prairie, J.C., Ziervogel, K., Camassa, R., McLaughlin, R.M., White, B.L., Dewald, C., Arnosti, C., 2015. Delayed settling of marine snow: Effects of density gradient and particle properties and implications for carbon cycling. Mar. Chem. 175, 28–38. https://doi.org/10.1016/j.marchem.2015.04.006.


Quigg, A., Passow, U., Chin, W.-C., Xu, C., Doyle, S., Bretherton, L., Kamalanathan, M., Williams, A.K., Sylvan, J.B., Finkel, Z.V., Knap, A.H., Schwehr, K.A., Zhang, S., Sun, L., Wade, T.L., Obeid, W., Hatcher, P.G., Santschi, P.H., 2016. The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol. Oceanogr. Lett. 1, 3–26. https://doi.org/10.1002/lol2.10030.


Santschi, P.H., 2017. Texas A&M University Introduces Exopolymeric Substances as Agents in Enhancing the Self-Cleansing Capacity of Natural Waters. American Exopolymerics Science & Technology 25 feature article. http://www. paneuropeannetworks.com/special-reports/american-exopolymerics/. Sharqawy, M.H., Lienhard, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354–380. https://doi.org/10.5004/dwt.2010.1079.


Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, E.K., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C., 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. https://doi.org/10.1016/0003- 2697(85)90442-7.


Sun, L., Xu, C., Zhang, S., Lin, P., Schwehr, K.A., Quigg, A., Chiu, M.-H., Chin, W.-C., Santschi, P.H., 2017. Light-induced aggregation of microbial exopolymeric substances. Chemosphere 181, 675–681. https://doi.org/10.1016/j.chemosphere.2017. 04.099.


Tako, M., 2015. The Principle of Polysaccharide Gels. Adv. Biosci. Biotechnol. 6, 22–36. https://doi.org/10.4236/abb.2015.61004.


Tcholakova, S., Denkov, N.D., Lips, A., 2008. Phys. Chem. Chem. Phys. 10, 1608–1627. Tsai, S.M., Bangalore, P., Chen, E.Y., Lu, D., Chiu, M.H., Suh, A., Gehring, M., Cangco, J.P., Garcia, S.G., Chin, W.C., 2017. Graphene-induced apoptosis in lung epithelial cells through EGFR. J. Nanopart. Res. 19, 262–275. https://doi.org/10.1007/s11051- 017-3957-9.


Verdugo, P., Santschi, P.H., 2010. Polymer dynamics of DOC networks and gel formation in seawater. Deep Sea Res. II 57, 1486–1493. https://doi.org/10.1016/j.dsr2.2010. 03.002.


Verdugo, P., Alldredge, A.L., Azam, F., Kirchman, D.L., Passow, U., Santschi, P.H., 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Mar. Chem. 92, 67–85. https://doi.org/10.1016/j.marchem.2004.06.017.


Wade, T.L., Sweet, S.T., Sericano, J.L., Guinasso Jr., N., Diercks, A.-R., Highsmith, R.C., Asper, V.L., Joung, D., Shiller, A.M., Lohrenz, S.E., Joye, S.B., 2011. Analyses of water samples from the deepwater horizon oil spill: documentation of the sub-surface plume. In: Liu, Y. (Ed.), Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophysical Monograph Series. Vol. 195. AGU, Washington, D. C, pp. 77–82.


Wade, T.L., Morales-McDevitt, M., Bera, G., Shi, D., Sweet, S., Wang, B., Gold-Bouchot, G., Quigg, A., Knap, A.H., 2017. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation. Marine Heliyon 3, e00419. https://doi.org/10.1016/j.heliyon.2017.e00419.


Wang, L., Yoon, R.-H., 2004. Hydrophobic forces in the foam films stabilized by sodium dodecyl sulfate: effect of electrolyte. Langmuir 20, 11457–11464. https://doi.org/10. 1021/la048672g.


Warszynski, P., Barzyk, W., Lunkenheimer, K., Fruhner, H., 1998. Surface tension and surface potential of Na n-dodecyl sulfate at the air-solution interface: model and experiment. J. Phys. Chem. B 102, 10948. https://doi.org/10.1021/jp983901r. Xu, C., Zhang, S.J., Chuang, C.Y., Miller, E.J., Schwehr, K.A., Santschi, P.H., 2011. Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Mar. Chem. 126, 27–36. https://doi.org/10.1016/j.marchem.2011.03.004.


Xu, C., Zhang, S., Beaver, M., Wozniak, A., Obeid, W., Lin, Y., Wade, T.L., Schwehr, K.A., Lin, P., Sun, L., Hatcher, P.G., Kaiser, K., Chin, W.-C., Chiu, M.-H., Knap, A., Kopp, K., Quigg, A., Santschi, P.H., 2018a. Decreased sedimentation efficiency of petro-carbon and non-petro-carbon caused by water-accommodated-fraction (WAF) and Corexitenhanced water-accommodated-fraction (CEWAF) in a coastal microbial communityseeded mesocosmt. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.002.


(In press). Xu, C., Zhang, S., Beaver, M., Lin, P., Sun, L., Doyle, S.M., Sylvan, J.B., Wozniak, A., Hatcher, P.G., Kaiser, K., Yan, G., Schwehr, K.A., Lin, Y., Wade, T.L., Chin, W.-C., Chiu, M.-H., Quigg, A., Santschi, P.H., 2018b. The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.005. (In press).


Z?ncker, B., Bracher, A., R?ttgers, R., Engel, A., 2017. Variations of the organic matter composition in the sea surface microlayer: a comparison between open ocean, coastal, and upwelling sites off the Peruvian coast. Front. Microbiol. 8, 2369. https:// doi.org/10.3389/fmicb.2017.02369.



蛋白質(zhì)外聚物中多糖的比例——摘要、簡(jiǎn)介

蛋白質(zhì)外聚物中多糖的比例——方法

蛋白質(zhì)外聚物中多糖的比例——結(jié)果與討論

蛋白質(zhì)外聚物中多糖的比例——結(jié)論、致謝!

婷婷一区二区三区,91精品在线影院,国产美女在线播放,caopeng在线
欧美在线视频日韩| 色婷婷综合久久| 粉嫩高潮美女一区二区三区| 精品少妇一区二区三区日产乱码 | 欧美伊人久久久久久午夜久久久久| 亚洲九九爱视频| 日韩一级免费观看| 成人黄色片在线观看| 亚洲国产精品久久人人爱| 精品国产乱码久久久久久久久| 成人性生交大片免费看中文| 亚洲综合久久av| 国产视频一区二区在线观看| 91官网在线免费观看| 麻豆91精品视频| 亚洲三级在线看| 精品久久一区二区三区| 在线看国产日韩| 高清不卡在线观看| 免费成人结看片| 亚洲一区二区在线播放相泽| 久久久不卡网国产精品二区| 欧美日韩国产高清一区二区 | 久久精品久久99精品久久| 国产精品欧美一区喷水| 91精品国产欧美日韩| 91小宝寻花一区二区三区| 久久国产麻豆精品| 亚洲成人综合视频| 亚洲欧美综合在线精品| 欧美精品一区二区三区高清aⅴ| 色偷偷成人一区二区三区91 | 国内一区二区在线| 天天综合色天天| 一区二区在线观看视频| 国产精品久久久久久久久免费相片 | 日本久久精品电影| 国产成人免费视频网站| 久久成人免费日本黄色| 五月天国产精品| 一区二区欧美视频| 亚洲情趣在线观看| 最新不卡av在线| 成人免费在线观看入口| 日本一区免费视频| 久久久午夜电影| 久久影院午夜片一区| 久久影院午夜论| 欧美国产日韩在线观看| 亚洲国产成人自拍| 中文字幕一区二区视频| 一区精品在线播放| 亚洲码国产岛国毛片在线| 亚洲欧美激情插| 一区二区三区日韩| 亚洲国产综合在线| 青娱乐精品视频在线| 狠狠色丁香婷婷综合| 国产成人免费av在线| 成人网页在线观看| 色婷婷久久久亚洲一区二区三区| 91福利视频久久久久| 在线播放/欧美激情| 精品国产在天天线2019| 国产欧美日本一区视频| 亚洲美女电影在线| 日韩激情av在线| 国产盗摄视频一区二区三区| 99精品国产91久久久久久| 在线观看免费视频综合| 日韩精品一区国产麻豆| 中文字幕免费不卡在线| 亚洲综合色区另类av| 免费在线看成人av| 成人开心网精品视频| 欧美午夜精品久久久久久超碰 | 日本亚洲最大的色成网站www| 久久国产免费看| 成人高清在线视频| 欧美日韩在线播放三区四区| 精品国一区二区三区| 亚洲少妇30p| 精品一二三四在线| 欧美亚洲综合色| 久久久亚洲欧洲日产国码αv| 亚洲人成影院在线观看| 乱中年女人伦av一区二区| 播五月开心婷婷综合| 91精品久久久久久久99蜜桃| 中文幕一区二区三区久久蜜桃| 亚洲精品一二三区| 国产一区二区网址| 在线这里只有精品| 久久综合久久综合久久| 亚洲香蕉伊在人在线观| 国产成人精品免费| 日韩免费高清av| 亚洲一区精品在线| 99久久伊人久久99| 久久久久久久久久久久久女国产乱| 亚洲曰韩产成在线| www.性欧美| 欧美经典一区二区| 韩国中文字幕2020精品| 7777精品伊人久久久大香线蕉超级流畅 | 欧美一区二区视频在线观看| 亚洲欧洲性图库| 国产老女人精品毛片久久| 日韩一区二区三区视频| 亚洲成人1区2区| 欧洲精品一区二区三区在线观看| 国产视频一区在线观看| 久久精品国产久精国产爱| 欧美美女一区二区| 亚洲电影欧美电影有声小说| 欧洲一区二区三区免费视频| 亚洲欧洲在线观看av| 粉嫩蜜臀av国产精品网站| 国产亚洲一区字幕| 国内欧美视频一区二区| 欧美成人伊人久久综合网| 免费成人av资源网| 欧美va亚洲va| 国产精品综合视频| 久久久久9999亚洲精品| 国产成人精品一区二| 中文字幕精品一区二区精品绿巨人| 久久精品国产亚洲高清剧情介绍 | 欧美片网站yy| 日韩国产欧美三级| 欧美一级搡bbbb搡bbbb| 免费成人在线影院| 欧美精品一区二区三区视频| 精品一区二区三区久久久| 精品裸体舞一区二区三区| 韩国一区二区在线观看| 国产日产精品1区| av午夜一区麻豆| 亚洲一区二区三区视频在线播放| 欧美日韩亚洲综合一区二区三区| 亚洲成人av在线电影| 91精品国产91热久久久做人人| 麻豆91在线播放免费| 国产亚洲欧美在线| 91视频在线观看免费| 亚洲成av人片在线观看| 日韩欧美黄色影院| 懂色av一区二区三区免费看| 自拍偷拍欧美精品| 9191成人精品久久| 丁香天五香天堂综合| 一区二区在线观看免费视频播放| 制服丝袜亚洲播放| 成人丝袜高跟foot| 偷拍日韩校园综合在线| 久久久久久久久免费| 日本福利一区二区| 日韩不卡一区二区三区| 国产三级欧美三级日产三级99 | 91蝌蚪porny九色| 视频一区二区中文字幕| 国产人成一区二区三区影院| 一本大道久久精品懂色aⅴ| 麻豆精品在线播放| 国产精品久久久久久久久快鸭| 欧美色图第一页| 成人免费毛片app| 奇米精品一区二区三区在线观看| 国产欧美日本一区视频| 欧美精品日韩一本| 99久久伊人久久99| 精品一区二区在线看| 亚洲国产一区二区视频| 国产精品久久久久一区二区三区| 欧美一区2区视频在线观看| 色综合中文字幕国产| 天天色图综合网| 中文字幕亚洲精品在线观看| 日韩免费福利电影在线观看| 在线观看av不卡| 色综合久久中文综合久久97| 美国一区二区三区在线播放| 亚洲精品中文在线影院| 中文欧美字幕免费| 久久久夜色精品亚洲| 在线不卡欧美精品一区二区三区| 91在线无精精品入口| 成人精品在线视频观看| 国产精品2024| 国产激情一区二区三区| 精品亚洲欧美一区| 美女任你摸久久| 男女视频一区二区| 天天综合网 天天综合色| 亚洲成人一区二区在线观看| 亚洲品质自拍视频网站| 中文字幕一区二区三区乱码在线| 久久久精品综合| 国产人成亚洲第一网站在线播放| 亚洲精品一区二区三区精华液|