合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 水面上單分子層膜通過(guò)磷脂光控開(kāi)關(guān)實(shí)現(xiàn)可逆光學(xué)控制:摘要、介紹、實(shí)驗(yàn)
> 當(dāng)蒽的表面張力為59.4mN/m時(shí),有效提高碳材料能量轉(zhuǎn)化效率
> 陽(yáng)離子、陰離子的界面潤(rùn)濕行為——實(shí)驗(yàn)材料和方法
> 界面張力儀的操作步驟
> 手從水中拿出來(lái)時(shí)為什么會(huì)有部分水粘在手上?
> 為什么液體的表面張力隨溫度升高而減少
> 表面張力儀復(fù)雜的操作流程簡(jiǎn)化講解
> 表面活性劑的生物毒性以及水的硬度和吸附效應(yīng)對(duì)于水生生物毒性的影響——實(shí)驗(yàn)
> 當(dāng)水的溫度升高時(shí)表面張力會(huì)變小
> 動(dòng)態(tài)表面張力儀應(yīng)用領(lǐng)域
推薦新聞Info
-
> 超低界面張力環(huán)保型高溫高鹽油藏的驅(qū)油表面活性劑配方比例及制備(二)
> 超低界面張力環(huán)保型高溫高鹽油藏的驅(qū)油表面活性劑配方比例及制備(一)
> 表面張力和接觸角的關(guān)系|寶玉石接觸角的測(cè)量結(jié)果和表面張力計(jì)算方法(三)
> 表面張力和接觸角的關(guān)系|寶玉石接觸角的測(cè)量結(jié)果和表面張力計(jì)算方法(二)
> 表面張力和接觸角的關(guān)系|寶玉石接觸角的測(cè)量結(jié)果和表面張力計(jì)算方法(一)
> 表面張力儀系統(tǒng)測(cè)定:溫度范圍內(nèi)甲基九氟丁醚的液相密度與表面張力
> 一套低溫、高壓懸滴法表面張力實(shí)驗(yàn)測(cè)量系統(tǒng)實(shí)踐效果(三)
> 一套低溫、高壓懸滴法表面張力實(shí)驗(yàn)測(cè)量系統(tǒng)實(shí)踐效果(二)
> 一套低溫、高壓懸滴法表面張力實(shí)驗(yàn)測(cè)量系統(tǒng)實(shí)踐效果(一)
> 不同溫度下純有機(jī)物液體表面張力估算方法及關(guān)聯(lián)方程(二)
乙醇、正丁醇、乙二醇等醇對(duì)BHEC水溶液表面張力的影響
來(lái)源:石油化工 瀏覽 3083 次 發(fā)布時(shí)間:2023-05-29
本工作采用乙醇、正丁醇、乙二醇、1,2-丙二醇、正辛醇和十二醇為添加劑,研究了不同醇對(duì)BHEC水溶液表面張力的影響。
不同的醇對(duì)BHEC水溶液表面張力的影響見(jiàn)下圖。
不同的醇對(duì)BHEC水溶液表面張力的影響
從圖可看出,乙醇、正丁醇、乙二醇和1,2-丙二醇4種醇均對(duì)BHEC水溶液的表面張力產(chǎn)生影響。因?yàn)檫@4種醇都是小分子極性有機(jī)化合物,一方面由于醇碳?xì)滏溨車摹氨健苯Y(jié)構(gòu)能插入到表面活性劑的膠束中,導(dǎo)致表面活性劑分子在水溶液表面的吸附能力增強(qiáng),即表面張力下降;另一方面醇分子又易與水分子結(jié)合形成氫鍵,改變表面活性劑分子周圍形成的“冰山”結(jié)構(gòu),導(dǎo)致醇分子本身參與BHEC膠束的形成,能夠穿插于BHEC分子之間,從而改變BHEC膠束的表面電荷密度,導(dǎo)致BHEC水溶液的表面張力增加或降低。
乙醇和正丁醇屬于一元醇,這兩種醇的加入能使BHEC水溶液的表面張力減小。當(dāng)未加入一元醇時(shí),BHEC溶于水后,BHEC分子能自發(fā)地吸附在溶液的表面,使溶液的表面張力降低,表面吸附的BHEC分子越多,溶液表面張力的降幅越大,當(dāng)然這其中有一個(gè)吸附飽和的問(wèn)題。但由于BHEC分子在水中處于空間交聯(lián)網(wǎng)絡(luò)結(jié)構(gòu),其定向排列時(shí)分子間存在一定的空間(見(jiàn)上圖)。加入乙醇或正丁醇后,醇分子可以插入BHEC分子間的空隙,使溶液表面吸附的分子達(dá)到緊密排列的狀態(tài)(見(jiàn)下圖),導(dǎo)致BHEC水溶液的表面張力繼續(xù)降低。
雖然乙醇和正丁醇都能降低BHEC水溶液的表面張力,但兩者又有所不同。與乙醇的分子結(jié)構(gòu)相比,正丁醇分子結(jié)構(gòu)中多了兩個(gè)碳碳鏈,憎水性比乙醇強(qiáng),更傾向于插入BHEC分子間空隙,在BHEC水溶液的表面吸附,使水溶液表面吸附的分子排列得更加致密,導(dǎo)致BHEC水溶液表面張力的降幅更大。正丁醇可使BHEC水溶液的表面張力由53.7 mN/m降至51.9 mN/m,下降了3.7%;而乙醇可使BHEC水溶液的表面張力由53.7 mN/m降至52.7 mN/m,僅下降了1.9%;且隨醇質(zhì)量濃度的增加,BHEC水溶液的表面張力單調(diào)遞減,正丁醇的影響程度大于乙醇。
作為二元醇的乙二醇、1,2-丙二醇能略微增加BHEC水溶液的表面張力,這是由于二元醇分子結(jié)構(gòu)中含有兩個(gè)羥基,與一元醇相比,它的分子極性和親水性均較強(qiáng),這種結(jié)構(gòu)能對(duì)BHEC分子疏水碳?xì)滏溨車摹氨健苯Y(jié)構(gòu)起到破壞作用,從而減小BHEC大分子吸附于其水溶液表面的趨勢(shì),使表面張力增加。另一方面,二元醇分子也能進(jìn)入在液體表面定向排列的BHEC分子間的空隙,使溶液表面吸附的分子達(dá)到緊密排列的狀態(tài),導(dǎo)致表面張力下降。由于以上兩方面的綜合作用,二元醇的加入使BHEC水溶液的表面張力略有增加,乙二醇能使BHEC水溶液的表面張力由53.7 mN/m增至55.1 mN/m,提高了2.6%;1,2-丙二醇能使BHEC水溶液的表面張力由53.7 mN/m增至54.5 mN/m,僅提高了1.5%。與乙二醇相比,1,2-丙二醇分子結(jié)構(gòu)中多了一個(gè)碳碳鏈,所以極性和水溶性略差,相對(duì)較易進(jìn)入液體表層的BHEC分子間空隙中,所以當(dāng)醇的質(zhì)量濃度相同時(shí),BHEC水溶液的表面張力增幅較小。





