芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

熱線:021-66110810,56056830,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟大學

同濟大學

聯合大學.jpg

聯合大學

寶潔公司

美國保潔

強生=

美國強生

瑞士羅氏

瑞士羅氏

當前位置首頁 > 新聞中心

溫度對水—十二烷基硫酸鈉體系與純水體系界面張力、厚度的影響——結果與討論、結論

來源:河南化工 瀏覽 146 次 發布時間:2025-04-14

2結果與討論


2.1純水氣—液界面行為的分子動力學模擬


選擇SPC、SPCE、TIP3P和TIP4P為水分子模型,分別在300、350、400、450、500和550 K的溫度下進行MD模擬,盒內水分子共有1 372個,選擇NVT系綜,截斷半徑是12 nm。通過模擬得到純水體系的密度分布、界面厚度和界面張力。


2.1.1密度分布


不同溫度下純水的初始密度如表2所示。

表2不同溫度下純水的初始密度


模擬分子數N=1 327,四種水分子模型分別在溫度T=300、350、400、450、500和550 K時,模擬得到的密度分布如圖4所示。從圖4可以看出,曲線可以劃分為三個部分,分別為汽相主體、液相主體以及氣—液界面層。隨著溫度的增加,液相主體密度逐漸降低,氣相主體密度逐漸升高,氣—液界面區域逐漸變寬。

(a)SPC(b)SPCE(c)TIP3P(d)TIP4P


將四種水分子模型模擬得到的不同溫度下的液相主體密度與實驗值比較,如圖5所示。由圖5可見,四種模型的模擬值和實驗值相比都偏低,且溫度越高,模擬值與實驗值的誤差越大;SPCE和TIP4P模型得到的液相密度與實驗值的誤差較小。


2.1.2界面厚度


根據“10-90”法則進行計算,分別求得SPC、SPCE、TIP3P和TIP4P在300~550 K的界面厚度如圖6所示。


從圖6中可以看出,隨著溫度的增加,界面厚度在不斷增加,而且溫度越高增加幅度越大,其中TIP3P模型的界面厚度增長幅度最大。

圖5不同水分子模型的液相主體密度與實驗值比較

圖6純水體系的界面厚度


2.1.3界面張力


四種水分子模型分別在溫度T=300、350、400、450、500和550 K時,模擬得到界面張力,如圖7所示。從圖7中可以看出,隨著體系溫度的升高,界面張力降低,并且模擬值與實驗值之間誤差逐漸減小。SPCE模型得到的界面張力與實驗值的誤差較小。

圖7不同水分子模型的界面張力與實驗值比較


通過液相主體密度和界面張力的模擬結果可知,SPCE的模擬效果較好,所以在研究水—表面活性劑體系氣—液界面行為時,選擇SPCE模型。


2.2水—表面活性劑體系氣—液界面行為的分子動力學模擬


分別在300、350、400、450、500和550 K溫度下進行MD模擬,盒內水分子數為3 000個,兩側的十二烷基硫酸鈉數目為10,選擇NVT系綜,截斷半徑1 nm,庫侖力的截斷半徑為1.2 nm。模擬得到水—表面活性劑體系的密度分布、界面厚度和界面張力。


2.2.1密度分布


向純水中加入十二烷基硫酸鈉表面活性劑,水分子3 000個,十二烷基硫酸鈉20個,模擬得到300 K下水—表面活性劑體系的密度分布,如圖8所示。由圖8可見,對于只有水的體系來說,其密度變化基本是符合由汽相到液相逐漸增加的趨勢,而對于加入的表面活性劑十二烷基硫酸鈉的體系來說,其密度的變化情況與只有水的體系有明顯的不同。從圖8可以看出,在氣—液兩相的過渡區域,加表面活性劑的體系密度出現明顯的增長。

圖8水—表面活性劑體系的密度分布


2.2.2界面厚度


界面厚度取從水相體相密度的90%到表面活性劑體相密度的90%。模擬水分子數N1=3 000,十二烷基硫酸鈉數N2=20,在溫度T=300、350、400、450、500和550 K時,模擬得到界面厚度,將其與純水體系的界面厚度對比,如圖9所示。從圖9可以看出,水—表面活性劑體系的界面厚度隨溫度的增加而增加,而且和純水體系的界面厚度對比可知,水—表面活性劑體系的氣—液界面厚度明顯增大。同時,對純水體系和水—表面活性劑體系的界面厚度模擬值進行擬合可分別得到式(4)和(5)。


d=-8.620 38+0.050 10T(4)


d=-8.697 14+0.084 23T(5)


式中:d為界面厚度,nm;T為溫度,K。

圖9水—表面活性劑體系與純水界面厚度對比


2.2.3界面張力


模擬水分子數N1=3 000,十二烷基硫酸鈉數N2=20,溫度T=300 K,水—表面活性劑體系的局部界面張力見圖10。由圖10可知,從汽相主體向液相過渡過程中,界面張力值逐漸增加,在氣—液界面區達到峰值;在液相主體又在零值附近波動。

圖10水—表面活性劑體系的局部界面張力


不同溫度下的水—表面活性劑體系的界面張力與SPCE模型的界面張力對比如圖11所示。

圖11水—表面活性劑體系與純水的界面張力對比


從圖11可以看出,水—表面活性劑體系的界面張力隨溫度的升高而降低,而且加入十二烷基硫酸鈉后水的界面張力明顯降低。對純水體系和水—表面活性劑體系的界面張力模擬值進行擬合可分別得到式(6)和(7)。


γ=107.714 29-0.162 86T(6)


γ=92.872 380-0.139 54T(7)


式中:γ為界面張力,mN/m;T為溫度,K。


3結論


采用分子動力學模擬技術,對水及其表面活性劑體系的氣—液界面行為進行研究。結果表明,隨著溫度的升高,純水體系液相主體密度降低,氣—液界面厚度增大,張力逐漸減小;SPCE模型與實驗值的誤差較小;十二烷基硫酸鈉—水混合體系與純水體系相比,氣—液界面厚度明顯增大,界面張力明顯減小,其隨溫度的變化情況和純水體系一致。


主站蜘蛛池模板: 韩国精品一区二区三区无码视频 | а天堂中文最新版在线| 亚洲一区二区三区在线观看蜜桃| 久久婷婷人人澡人人喊人人爽 | 午夜不卡久久精品无码免费| 国产成人小视频| 假山后面的呻吟喘息h| 久久夜色精品国产噜噜麻豆| 91成人午夜在线精品| 美女被狂揉下部羞羞动漫| 欧美人与zoxxxx另类| 少妇中文字幕乱码亚洲影视| 国产成人精品高清不卡在线| 亚洲第一区二区快射影院| 中文字幕www| 黑白高清在线观看| 欧美日韩国产高清视频| 成人理伦电影在线观看| 国产无遮挡又黄又爽在线视频| 亚洲精品白色在线发布| 一级毛片免费不卡| 野花社区视频www| 果冻传媒麻豆电影| 国产高清在线视频| 免费观看激色视频网站bd| 久久久久人妻一区精品果冻| 中文字幕亚洲色图| 波多野结衣教师在线| 小说区乱图片区| 亚洲美免无码中文字幕在线| www久久精品| 精品国产a∨无码一区二区三区 | 97国产免费全部免费观看| 精品一区二区三区影院在线午夜| 日本韩国在线视频| 国产精品99久久久久久人| 亚洲激情电影在线| JAPANESE国产在线观看播放| 粉色视频在线播放| 少妇人妻偷人精品一区二区| 亚洲精品日韩中文字幕久久久|